Теплообменные аппараты

В наиболее распространенных поверхностных теплообменниках типа «воздух — жидкость», «воздух-хладагент» в качестве возмущающих воздействий выступают температура жидкости на входе twBx, расход воздуха Ов, температура воздуха на входе :вх (рис. 2.32). Управляющими воздействиями могут быть расход жидкости Gw, температура жидкости ^вх, расход воздуха Gu, а регулируемый параметр :вых.

Теплообменные аппараты

Рис. 2.32. Функциональная и структурная схемы теплообменника типа «жидкость-воздух»

Многочисленные теоретические и экспериментальные исследования показали, что в первом приближении передаточная функция такого аппарата вне зависимости от канала управления описывается типовым апериодическим звеном первого порядка вида [2]

K

W (p) =

T • p +1

Где K — статический коэффициент передачи аппарата;

(2.22)

T — постоянная времени теплообменного аппарата. Ниже приведена одна из нескольких возможных зависимостей, позволяющая приближенно оценить инерционность аппаратов такого вида:

Т=(СМ м м +см w )i[ewGw+(kF+-g-)-

(2.21)

KF cG

Где см, cw — теплоемкости металла и воды;

Мм, Mw — массы металла и воды;

Gw — расход воды;

K — коэффициент теплопередачи аппарата;

F — поверхность аппарата.

Статическая характеристика аппарата, описываемая статическим коэффициентом передачи К, может быть также получена расчетным путем, хотя эта зависимость еще более сложная, чем для постоянной времени. Поэтому для оценки пользуются статическими характеристиками, полученными графоаналитическим методом. Кроме этого, при анализе необходимо учитывать ограничения, связанные с тем, что при температуре наружного воздуха ниже нуля и определенных скоростях потока (<0,1 м/с) создается угроза замораживания аппарата.

Управления поверхностными жидкостными теплообменниками может осуществляться по трем каналам: расходом жидкости, температурой теплоносителя и байпасированием (перепуском) воздуха. Возможные варианты их технической реализации, а также вид статических характеристик показаны на рис. 2.33.

®

Р/К~1 ,

^K’L I / X Г,

Ь I і—— ї— I—ь —

G„- var

Теплообменные аппараты

Б

В

Рис. 2.33. Способы управления поверхностными теплообменниками типа «жидкость-воздух»:

Теплообменные аппараты

А

G„= CCIlSt, tax >

А — расходом жидкости; б — температурой теплоносителя; в — расходом воздуха

Управление расходом теплоносителя (рис. 2.33, а) — самый распространенный способ, как наиболее простой и дешевый (может быть реализован с помощью одного двухходового клапана). Однако регулировочная характеристика этого канала — зависимость выходной величины :вых от расхода жидкости — нелинейна: при малых расходах и скоростях воды :вых сильно меняются, при больших скоростях происходит так называемое «насыщение» регулировочной характеристики. Таким образом, статический коэффициент передачи К меняется во всем диапазоне регулирования. Это же относится к постоянной времени Т, сильно зависящей от расхода жидкости (2.22). Следовательно, как динамические, так и статические характеристики аппарата по этому каналу управления — нелинейны, что затрудняет настройку регулятора. В ряде случаев можно несколько спрямить статическую характеристику за счет выбора «обратной» характеристики регулировочного клапана.

Еще одним недостатком управления расходом является опасность замерзания воды в трубах при малых скоростях воды и отрицательной температуре наружного воздуха. Областью возможного применения данного метода управления является выбор нижней границы расхода G^^, обеспечивающий скорость воды в трубах не менее 0,2 м/с.

Управление температурой теплоносителя (рис. 2.33, б) осуществляется с помощью двух двухходовых клапанов или одного трехходового и циркуляционного насоса. Регулировочная характеристика при этом линейна, коэффициент передачи постоянен. Если выбрать клапаны с линейной характеристикой, то управляемый аппарат по этому каналу представляется линейным объектом. При этом динамические характеристики при постоянном расходе воздуха также остаются неизменными, а при переменном расходе — меняются незначительно. По выбранной скорости воды (обычно 0,3-0,5 м/с) с учетом обвязок теплообменника определяется расход воды через аппарат и подбирается насос. При таком подходе гарантируется защита от замерзания в рабочем режиме и безопасность повышения температуры горячей воды. Таким образом, схема управления температурой теплоносителя является лучшей по своим техническим характеристикам.

Управление с помощью байпасирования воздуха (рис. 2.33, в) представлено как технически возможное, но качество регулирования, присущее такому методу, невысоки: расход теплоты или холода нельзя снизить до нуля, регулировочная характеристика нелинейная и т. д. Поэтому на практике для автоматического регулирования этот метод не применяется.

Еще следует остановиться на параметре ^вьіх — температуре воды на выходе из теплообменника. Она не является регулируемым параметром, но ее контроль необходим. Именно ее минимальная величина совместно с температурой наружного воздуха является определяющей для установки критерия срабатывания защиты от замерзания теплообменника.

Роторный рекуператор как объект управления, одноканальный, т. е. используется только одно управляющее воздействие — изменение частоты вращения ротора, при регулируемом параметре — температуре приточного воздуха :пр. Однако данные по анализу статических и динамических характеристик роторных рекуператоров отсутствуют. Можно предположить, что при неизменных расходах приточного и удаляемого воздуха передаточная функция роторного рекуператора W(p) постоянна и соответствует типовому апериодическому звену первого порядка с инерционностью в несколько минут (при диапазоне скоростей ротора 3-11 мин-1 и максимальных скоростях воздуха до 4,0 м/с).

Возможность замерзания также присуща этому виду аппаратов. Поэтому для автоматической защиты, кроме стандартных мер снижают скорость вращения ротора, что позволяет увеличить интенсивность его нагрева теплым воздухом.

Posted in Автоматика кондиционеров


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *