Types of coupling
Non-disengaging couplings maintain, after assembly, a more or less flexible but continuous transmission of the rotational movement. The connection is only broken for disassembly, repair, etc. Flexible couplings of one form or another, which are capable of absorbing residual misalignment, are most common; although solid couplings do have their areas of use, see Figure 12.1.
Owe coupling Figure 12.1 Examples of solid shaft couplings |
One example is the split muff coupling, the main advantage being its ease of assembly. It is best used for low speed applications due to the difficulties in balancing. The sleeve coupling is mounted and removed by oil-injection; being almost symmetrical, balancing is easy.
In the early days of fan engineering rigid couplings were frequently used, as witness the Keith mine fan in Figure 1.21 in Chapter 1. However, extremely careful alignment was necessary if additional loads were not to be imposed on the fan or motor bearings.
It did, however, give the possibility of using only one fan bearing. Reference to Chapter 9, Figure 9.3 show that rigid couplings were used in arrangements 5 and 6 of the NAFM (USA) Bulletin 105. It is not without significance that these arrangements are now withdrawn. Fitters would nowadays have apoplexy if called upon to align three or four bearings!
Torsionally-rigid flexible couplings consist of various types of diaphragm and gear couplings, shown in Figure 12.2. Couplings with a single functional element have the ability to take up angular and axial misalignment. Couplings with two functioning elements separated by a fixed “spacer”, are also able to cope with radial misalignment, whereby the magnitude of the radial misalignment is determined by the angular misalignment multiplied by the distance between the coupling elements.
Torsionally-flexible shaft couplings usually consist of flexible rubber, plastic or even steel elements, as in Figure 12.3. The first mentioned coupling elements require somewhat larger
|
Figure 12.2 Examples of torsionally-rigid flexible couplings |
Figure 12.4 Shaft coupling examples |
Figure 12.3 Examples of torsionally flexible couplings |
Coupling diameters because of their lower load carrying capacity. Single element couplings can accommodate radial misalignment as well as angular and axial. The flexible spring coupling is interesting because it is designed to have a variable torque/deflection characteristic. Together with dampening provided by the grease lubricant, the variable torque/deflection characteristic provides a powerful torsional vibration damp — ener.
The torsionally-flexible couplings shown can be built with two working elements and a spacer to allow additional radial misalignment. In order to simplify disassembly and service of some machines, spacer couplings can be used. An example of these is shown in Figure 12.4 b.
Removal of the spacer enables the rotating elements to be serviced without necessitating the removal of the whole machine. A limited end float feature is available for driving or driven machines not fitted with an axially located bearing as shown in Figure 12.4 a.
Cardan shaft couplings with rubber end stops as shown in Figure 12.4 c are also available.
Posted in Fans Ventilation A Practical Guide