Basic Heat Transfer Modes
Fourier’s Law:
|
O
Where q = heat flux (W/m )
K = thermal conductivity (W/m K) (material property, Table 5-1 of the text) dT/dx = temperature gradient (K/m)
• Heat transfer in a single-layer wall
In most practical uses, k is approximated as constant. For steady-state heat transfer, q is constant. Then the equation can be integrated
|
Heat transfer in a multi-layer wall T. |
|
X, |
X4 |
X2 X, |
X |
K(T2-T1)_ (T2-T,) (x2 ~xi) |
Q = — |
R |
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
![]() |
||||||||||||
|
||||||||||||
|
||||||||||||
![]() |
||||||||||||
|
„ X, —X9 R? = -*—— 1 K2 X4 ~X3 |
R, |
Q-T,) R, Q-T7.) R2 (T4-T,) R, |
Qi =“ |
Q3 =- |
![]() |
|
|
|
|
|
![]() |
|
Qi = q2 = q3 = q Re-arrange the equations |
Since |
QiRi = — (T2 — Ti) q2R2 = — (T3 — T2) q3R3 = — (T4 — T3) |
So that q(Ri + R2 + R3) = — (T4 — Ti)
Or
(T4-T,) Rj + R-, + R3 |
Q = |
![]() |
|
||||||
|
|||||||
Here
R — Ri + R2 + R3 |
Is the total thermal resistance due to conduction.
C= 1/R Example 5.1 |
Thermal conductance (W/m K).
An exterior wall of an PSU classroom consists of 0.24 m thick face brick, 0.09 m thick mineral fiber, and 0.013 m thick plasterboard. If the exterior surface temperature of the wall is 0 °C and the interior surface 20 °C. Determine the heat flux and temperature distribution in the wall.
Common Mineral Plaster |
Solution:
From Table 5-1, k^ck = 1.30 W/m K, Rflber = 1.94 m2 K/W, Rb0ard =0.078 m2 K/W. O
Q = |
R |
Posted in Fundamentals of Heating. Ventilating, and Air-Conditioning |